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1. Introduction

Part I of this paper presented the requirements for the real-time simulation of Cassini

spacecraft, along with some discussion of DARTS algorithm. Here, in Part II we discuss the

development and implementation of parallel/vectorized DARTS algorithm and architecture

for real-time simulation. Development of the fast algorithms and architecture for real-time

hardware-in-the-loop simulation of spacecraft dynamics is motivated by the fact that it

represents a hard real-time problem, in the sense that the correctness of the simulation

depends on both the numerical accuracy and the exact timing of the computation. For

a given model fidelity, the computation should be completed within a predefined time

period. Further reduction in computation time allows increasing the fidelity of the model

(i.e., inclusion of more flexible modes) and the integration routine.

An analysis based on the computational structure of DARTS and the specific dynamic

model of the spacecraft is made to determine efficient algorithmic/architectural techniques

for achieving real-time simulation capability. This analysis indicates that a combined

parallel/vector algorithmic technique along with a multiple vector processors architecture

represents the most efficient and cost-effective approach.

The most important (and the new) issue in this paper is the development of the vec-

torized algorithms for spacecraft dynamic simulation. Until recently, only the users of

vector supercomputers for non-real-time applications were concerned about the vectoriza-

tion issue. Usually, the vectorization was limited to the use of the automatic vectorizers,

provided by the vector supercomputers vendors, using an already developed software code.

This represents a suboptimal use of the vector supercomputers computing power since the

automatic vectorizers have a very limited capability and are efficient only for low level

vectorization. For most problems, a significant speedup can be achieved by developing a

new algorithm or restructuring the old algorithm by global vectorization of the compu-

tation. However, due to the non-real-time nature of the applications, the fact that the

vector supercomputers even in scalar mode (for serial computation) were faster than any

other serial processor, the time and effort required for the development of new vectorized

algorithms and software codes, the users were, most often, satisfied by the suboptimal per-

formance. As a result, the development of the vectorized algorithms has been studied for
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very few and mostly regular problems, e.g., matrix-vector operations, direct and indirect
(iterative) linear system solution, etc. To our knowledge, the vectorization of multibody
dynamics has been only recently studied for a rather simple caseof a serial chain of rigid
multibody (a robot manipulator) on Cray supercomputers [5,6].

However, this situation is rapidly changing and more effort is being made on the
analysisand designof vectorized algorithms and software. This is motivated by the advent
of a new generation of low-cost single-board vector processorswith computational powers
previously offered by the vector supercomputers. These new vector processorsprovide,
for the first time, the opportunity for the designand implementation of high performance
embeddedcomputer architecture for real-time applications. However,in order to meet the
real-time constraint, efficient vectorized algorithms need to be developedfor exploitation
of computing power of thesenew vector processors.

The hardware and software considered in Part II of this paper represent the first
generation of such low-cost vector supercomputers. As such, they lacked some important
features for efficient vectorization and parallelization. However, since the development
of this work, significant improvement has beenmade on hardware and software of new
generations. The approach developed in Part II of this paper and the lessonslearned
through practical hardware and software implementation, along with theseadvancednew
generationsof multiple vector processors,indicate that the real-time simulation capability
for more complex systemssuchas the SpaceStation is now achievable.

Part II of this paper is organizedasfollows: Section2 reviewsthe different algorithmic
and architectural techniquesfor fast implementation of DARTS, and discussesthe features
of selectedtarget architecture; Section 3 discussestechniquesfor global vectorization and
efficiencyof vector algorithms; Section 4 discussessomeimplementation issuesand several
aspectsof the implemented algorithms through examples;and finally, Section 5 contains
somediscussionand concluding remarks.

2. Algorithm and Architecture Selection For Real-
Time Simulation

A. AN ANALYSIS OF ALGORITHMIC / ARCHITECTURAL TECH-

NIQUES FOR FAST IMPLEMENTATION OF DARTS

Generally, there are three algorithmic/architectural techniques that can be used to

speed up the computation of a given problem: symbolic manipulation, parallelization, and

vectorization. The choice of one or a combination of these techniques depends on: (1) the

structure of computational problem, and (2) the availability and cost effectiveness of the

required computer architecture.

Symbolic manipulation is a rather straightforward technique that is widely used in

multibody dynamics community (see, for example, [12]). Using this technique, a greater

computational efficiency can be achieved by eliminating the redundant operations and r
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generating the symbolic expressions for the equations. However, two issues regarding the

application of the symbolic manipulation technique need to be considered. First, the

speedup due to the symbolic manipulation should be analyzed in a relative context and

not as an absolute one. That is, if the original algorithm has a compact, efficient, and

recursive structure-whlch is the case for DARTS-then the use of symbolic manipulation

will not result in a noticeable speed-up. Second, the evaluation of the symbolic expressions

is a strictly serial computation. Hence, if symbolic manipulation is used, then it would be

difficult to further reduce the computation time by parallelization and/or vectorization. In

this case, the only way to reduce the computation time is to use a faster serial processor.

However, both the structure of DARTS and the specific model (star topology and

flexible bus) of the Cassini spacecraft make the computation highly suitable for paral-

lelization and/or vectorization. For parallel computation, at first glance it may seem that

the computation can be fully parallelized by assigning one processor per body. However,

as discussed below, this will lead to a limited speed-up. For vector computation, a large

part of the computation can be described in terms of two basic operations: scatter and

gather operations, which are highly suitable for vectorization since they involve operations

on large matrices and vectors. Furthermore, the size of matrices and vectors increases with

both the number of flexible modes and the number of appendages. In order to better assess

the suitability of the computation for parallel and/or vector computation and analyze the

resulting algorithmic/architectural trade-offs, a more careful study of the structure of the

computation is needed. Note that in this study we are only interested in the coarse grain

parallelism since it can be exploited by low-cost, commercially available, multiprocessor

architecture.

The basic computational steps of the DARTS for the Cassini spacecraft (Figure 1)

can be summarized as follows (see [1,3] for a more detailed discussion):

Step I:

1. Propagate the linear and angular velocity from the bus to appendages.

This step is suitable for both parallelization and vectorization. It can be done in

parallel for all appendages. It also represents a scatter operation and can be done by

performing a single, large matrix-matrix multiplication (see Section 4).

2. Compute the gyroscopic accelerations and forces of the appendages.

This computation is more suitable for parallelization since it can be done in parallel

for all appendages. It involves matrix-vector operations with rather small vectors and

matrices which makes it less efficient for vectorization (see also Section 4).
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Step II:

1. Propagate Articulated-Body Inertia from appendages to the bus and com-

pute the Articulated-Body Inertia of the bus.

The propagation of the Articulated-Body Inertia from appendages to the bus can be

performed in parallel for all appendages. But the computation of the Articulated-Body

Inertia of the bus remains serial and also involves many-to-one type of interproces-

sor communication. However, both the propagation of the Articulated-Body Inertia

from appendages and the computation of Articulated-Body Inertia of the bus can be

described in terms of gather operations, which involve matrix-matrix multiplications

with very large matrices and, hence, they are highly efficient for vector computation.

2. Propagate the residual forces from appendages to the bus and compute

the effective residual forces of the bus.

Again, the propagation of the residual forces from appendages to the bus can be per-

formed in parallel for all appendages. But the computation of residual force of the bus

remains serial and also involves many-to-one type of inter-processor communication.

However, both the propagation of the residual forces and the computation of residual

force of the bus can be described in terms of gather operations, which involve matrix-

vector multiplications of large matrices and vectors and, hence, are highly efficient for

vector computation.

Step III:

1. Compute the acceleration of bus.

The computation of acceleration of bus involves the solution of a symmetric, positive

definite, linear system which is more suitable for vectorization than for coarse grain

parallelization.

2. Propagate acceleration of bus to appendage.

As in Step 1.1, this propagation can be performed in parallel but it also involves one

type to many types of interprocessor communication. It also represents a scatter

operation and can be done by performing a single, large matrix-vector operation.

3. Compute hinges acceleration.

Similar to Step 1.2, this computation is more suitable for parallelization since it can be

done in parallel for all hinges. It involves matrix-vector operations with rather small

vectors and matrices which makes it less efficient for vectorization.

The above analysis clearly suggests that the computation of DARTS for the Cassini

311



spacecraft can be speeded up by both parallelization and vectorization. Furthermore, a

combined parallelization/vectorization algorithmic approach can lead to a speed-up greater

than that achievable by either parallelization or vectorization alone. This combined algo-

rithmic approach is further motivated by the emergence of low-cost multiprocessor archi-

tectures that employ vector processors, such as Intel i860, as the node processor.

There are, however, two issues that need to be considered in applying this combined

algorithmic approach, which also can affect the choice of an optimal target architecture

for its implementation. The first issue is that a limited speed-up can be achieved by

assigning one processor per body since the ratio of fully parallelizable computations over

strictly serial computations isn't very large. This is mainly due to the specific model of

Cassini spacecraft; that is, rigidity of the appendages and high flexibility of the bus. In

fact, most of the fully parallelizable parts of the algorithm involve the computations for

the rigid appendages; e.g., Steps 1.2 and III.3, which are less intensive than the strictly

serial parts that involve the computations for flexible bus, and also the computation of

Articulated-Body Inertia (Step II.1) and acceleration (in Step II.1) of the bus.

Another important factor for efficient parallelization of the computation is the proces-

sors interconnection. As stated before, the parallelization of DARTS for Cassini spacecraft

involves many-to-one and one-to-many types of processors communication. Therefore,

without an interconnection structure that can handle fast processors communication of

these types, the communication overhead can degrade the achievable speed-up.

The second issue is that there is a trade-off between the degree of parallelization (i.e.,

number of processors), and the degree of vectorization. To see this, let us consider those

steps that are suitable for both parallelization and vectorization (Steps 1.1, II.2, III.2, etc.).

For example, in Step I.l., with one processor per appendage, the propagation can still be

done by performing matrix-vector operations with small matrices. However, if the number

of processors is reduced-which also reduces the speedup due to the parallelization-then

the propagation for more than one appendage is done by each processor which implies that

the size of matrices and hence the speedup due to vectorization increases.

B. THE CHOICE OF TARGET ARCHITECTURE

Based on the above analysis and given the possible options on the commercially avail-

able low-cost multiprocessor architectures (at the time of this project) and other constraints

on cost, hardware and software development time and effort, we chose a two-vector pro-

cessors architecture [2]. This choice was based on our conclusion that, in order to speed up

the computation, it was more efficient (both from an algorithmic and architectural point

of view) to exploit a limited parallelism but attempt to exploit maximum vectorization.

Figure 2 shows the dynamic simulation system [2]. It consists of a SUN workstation

and a VME subsystem. The SUN workstation is the host of system, which is used for

software development, and is interconnected through ETHERNET to the VME subsystem.

The VME subsystem includes a general-purpose single-board computer based on 68030
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processor, which is the local host of VME subsystem, two single board vector processors,

and a memory reflector board for high speed interface with another VME system, the

real-time control computer.

Each vector processor is a SKYbolt VME bus compatible board with an i860 as the

vector processor and an i960 as the communication processor. The choice of the SKYbolt

over other commercially available i860-based boards was mainly due to a faster main

memory [2]. The SKYbolt was the only one that provided a SRAM main memory while

the others had a DRAM main memory with a memory bandwidth of half of that of SRAM

main memory. As will be discussed in Section 5, our practical implementation showed that

the choice of the SRAM main memory resulted in a very decisive factor in meeting the

real-time constraint.

The VME compatibility was basically required for the purpose of integration with and

the interface to the rest of the spacecraft hardware-in-the-loop simulation hardware. Based

on the vendor's specification, the SKYbolt board provided three communication channels

through the VME port, VSB port, and AUX (a fast and private I/O) port [13]. Therefore,

it was originally assumed that the communication between the two SKYbolt boards would

be performed by using the fast AUX port. However, neither AUX port nor VSB port

were functional at the time of our implementation. This forced us to use the VME bus as

the communication bus between the two SKYbolt boards. However, the VME interface

chips on the SKYbolts were not fully functional. This resulted in a significant loss in the

communication speed between the two SKYbolts compared to the nominal speed of the

VME bus. As a result, our system was highly imbalanced for parallel computation since

the processors' computation speed (particularly in full vector mode) was much greater than

the bus' communication speed. This implied that only very coarse grain parallelism with

minimum communication requirement could be efficiently exploited by the system. Note

that, even by using a fully functional AUX channel the system would have still remained

imbalanced. This clearly indicates that, without using an extremely fast communication

structure, efficient parallel computation with multiple vector processors such as i860 would

not be possible (see Section 5).

3. Vectorization Strategy

The SKYbolt can be used as an accelerator, i.e., simply as a fast serial processor,

to speed up the serial computation. According to the vendor's claim, in accelerator

mode the SKYbolt can provide a speed-up of about 2 over the SUN Spare II. Our double

precision implementation of serial DARTS algorithm on both the SUN Spare II and the

SKYbolt showed a similar speedup (Table I). This result indicated that, in order to meet

the real-time constraint, a greater speedup through vectorization of the algorithm was

needed.

The i860 has peak computational power of 80 and 64 MFLOPS for single- and double-

precision computation. It has most of the functional units of vector supercomputers.

However, the vector supercomputers, such as the Cray series, in addition to a fast vector
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processingunit, also have a fast (usually the fastest available) scalar processor for serial

computation [8,10]. For i860, both vector and serial parts of the computation are per-

formed by the same units. As a result, the i860 has a poor ratio of speed of serial over

vector computation because the speed of serial computation (as can be seen by the above

comparison with SUN Spare li) is much less than that of vector computation. Thus, a

higher degree of vectorization, even more than that for vector supercomputers, is required

for i860 to achieve a satisfactory sustained computation power. -.

The SKYbolt also provides a software environment almost similar to that offered

by the vector supercomputers. However, the i860 and the SKYbolt represent the first

generation of such low-cost vector processors and, therefore, lack many important features

needed for efficient vector computation (see Section 5). Nevertheless, the strategy for

vectorization on the SKYbolt is basically similar to that for other vector processors. In

the following, we briefly discuss some of the key issues that have been considered in the

design, analysis, and implementation of the vectorized version of a DARTS algorithm.

A. LOCAL AND GLOBAL VECTORIZATION TECHNIQUES

There are two techniques for vectorization of a given computation [9,10]: local and

global vectorization. The SKYbolt, like vector supercomputers, provides two tools for local

vectorization. The first tool is a library of highly optimized routines for matrix-vector and

other operations that can be used by subroutine calls. The second tool is an automatic

vectorizer that analyzes the data dependency and then vectorizes the computation of in-

nermost Do-loops (i.e., scalar loops) of the overall computation [7,8-10]. Another widely

used technique not in the above computation is chaining of the operations [8-10].

However, if the matrices and vectors are small, then the use of optimized routines

does not significantly increase the performance. Also, if a code is already developed and

optimized for serial computation, then it may have strong data dependency in which even

the most advanced automatic vectorizers cannot vectorize. For most problems a greater

speedup can be achieved by recasting the algorithm in a form suitable for vector computa-

tion, i.e., by a global vectorization. This is more difficult than the local vectorization and

can be only done by the algorithm designer [9,10] as it may require major restructuring

of the data and computation of the algorithm. In Section 4, we discuss some examples of

such global vectorization. It should be also mentioned that our practical implementation

indicated that even efficient use of library routines may require restructuring of the com-

putation. There are not well-defined techniques for global vectorization and it is indeed

highly problem dependent [9]. Nevertheless, there are several key issues regarding efficient

vectorization that need to be taken into account in the design and analysis of vectorized

algorithms. These issues are briefly reviewed here. The reader is referred to [7, 9-11] for a
more detailed discussion.

B. THE EFFICIENCY OF VECTOR ALGORITHMS

The speedup of vectorized algorithms, like parallel algorithms, is measured according
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to the Amdahl's Law.

Let f represent the vectorized fraction of the computation, k the speed of vector

operations relative to the speed of scalar operations, and SP the speedup of the vectorized

algorithm over serial algorithm. It follows then that

1
sP =

- f) + f /k

In order to increase the speedup, f and k should be increased, k is a function of the size

of vectors and matrices as well as the type of matrix-vector operation. The computation

time, T, of a vector operation is given as:

T = r + nt (2)

where n and t stand for the size of the vectors and the clock time of the vector processor, r

represents the overhead of vector operation due to the loop setup, load and store operations,

etc. If n is large enough so nt >> r then the computation of vector operation is

dominated by nt. That is, k is maximized and the vector processor performs one operation

per clock cycle.

There is a vector size below which vector computation becomes less efficient than

scalar computation. This size is called breakeven point [7] and is designated as nB . The

value of nB depends on the type of operation. There is no information on n for the i860.

Although originally we suspected nB to be rather small [3], in practical implementation

and for various matrix-vector operations we found nB to be quite large (several times that

for Cray series), which indicates that only operations on very large matrices and vectors

can be efficiently implemented on the i860.

As a conclusion, in vectorizing the algorithm an attempt should be made to:

(1) increase the number of matrix-vector operations, and hence increase f; and

(2) increase the size of the vectors and matrices, n, so that n >> nB , and hence increase

k.

C. MEMORY BANDWIDTH AND DATA ORGANIZATION

For vector processing, the data movement may sometimes take more time than the

computation (see the example in Section 4). Therefore, the second issue in analyzing

the performance of vector supercomputers is the data structure. To efficiently use the

high speed floating-point units, data should be fed with adequate speed. In the pipelined

mode, the i860 can initiate two floating-point operations (one add and one multiply) per

clock. This requires fetching four operands and storing two results per clock which indeed

requires a very high bandwidth memory. To achieve such a high bandwidth, the vector
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supercomputers use a hierarchical memory organization. However, in addition to the
memory organization, the data structuring is also neededfor achieving and maintaining
the high bandwidth. For example,while the i860canperform two floating-point operations
per clock cycle, fetching an operand from an arbitrary location in the main memory can
take severalclock cycles.

The memory organization of vector supercomputers usually includes a set of registers,

as a fast and limited size memory; a cache memory, as medium-size medium-speed memory;

and a main memory, as a large and slow memory. The i860 has a set of thirty two 32-bit

data registers and 8 Kbyte (1 K double-precision) data cache. The selected SKYbolt board

provides a 2-Mbyte fast SRAM memory as the main memory. Unlike the register-oriented

vector supercomputers, such as Cray series, which utilize a larger size register (in the order

of Kbyte), the i860 has a rather small size set of registers. However, it is claimed that the

cache memory can be used with the same performance as the registers for vector operations

[4].

To minimize the data movement overhead, the following issues need to be considered:

1. Data Contiguity:

The related data should be locatedl as much as possible, in the contiguous locations

in the cache and main memory. Obviously for vector operation the elements of the

vectors (and matrices) should be stored in contiguous locations, i.e., with unit vector

stride. The vector instructions that access memory have a known pattern and if the

elements of vectors (matrices) are all adjacent, then the maximum speed in data access

is achieved by pipelining.

2. Data Locality:

Given the slow speed of the main memory, the access to the main memory should be

minimized. This implies that the intermediate data should be kept in the registers and

cache memory. Also, once data is fetched from the main memory and loaded into

the cache, all of the operations that require the data should be performed before

the data is returned to the main memory, i.e., the vector touch should be minimized.

Given the limited size of the cache, this may even require reordering the computation.

As a conclusion on the design of efficient vector algorithms, we would like to quote

from [11, p. 47], "We have shown that the efficiency of a vector- pipeline matrix computa-

tion depends upon the vector length, the vector stride, the vector touch, and the data re-use

properties of the algorithm. Optimizing with respect to all these attributes is very compli-

cated and something of an art. A good compiler can of course do some of the thinking for

us, but do not count on it!"

Note that in [11] general matrix computations are considered which are much simpler

than a rather complex algorithm such as DARTS.
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4. Development and Implementation of Vectorized /
Parallel DARTS

Based on the analysis of Sections 2 and 3, we first developed a parallel/vectorized

version of DARTS [3]. However, the practical implementation of this algorithm resulted in

an interactive vectorization process. Detailed timing was used to measure the computation

time of each subroutine and the overall computation. The data structure and operations

of the algorithm were then constantly modified to minimize the computation time. As a

result, the final implementation was different from the original algorithm in [3]. Two issues

made these modifications necessary. First, the algorithm in [3] was based on general and

theoretical assumptions regarding vector processing. Given the fact that this was our first

experimentation, many lessons were learned on detailed practical issues through actual

implementation. The second, and more important, issue was due to the shortcomings of

both hardware and software of the SKYbolt. Some of the necessary routines either were

not provided or were not functional. Also, no means was provided to control the cache

memory (see also Section 5). As a result, we were forced to develop our own subroutines

or to change the computation. Here, we discuss some of the implementation issues. Due

to the lack of space, only a few representative examples are given.

A. SCATTER OPERATIONS: VELOCITY PROPAGATION

The propagation of velocities is a simple, but representative, example that shows

how the topology of the spacecraft allows efficient global vectorization of computation,

which follows m and n that stand for the number of bus flexible mode and the number

of appendages. Here, the main computation is the evaluation of the deformation variables

for all the appendages:

Fori=l ton,

rgl

j----1

(3)

m

j=l

(4)

m

= =
j=-I

(5)

m

3_(i) = Z "TiJilJ = "r(i)il
j=l

(6)
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A
where r/= col{r/j} and r) zx col{r_}c_mx, are the vectors of modal deformation coordinates

of the bus. Aij and ")*ijC_ TM are the rotational and translational displacement vectors

of the jth mode for the ith appendage, A(i) _ row{A/j} and 7(Q _ row{'/i_/} e_ax'' "

8r(i),/St(i), 6,,(0, and 6v(i)eR a×_ are the translational and rotational deformation and the

linear and angular deformation velocities of appendage i. Due to the star topology of

the spacecraft, the propagation for all appendages can be done simultaneously, i.e., the

computation in Eqs. (3)-(6) can be done in parallel for all i = 1 to n.

For serial computation, the two forms in Eqs. (3)-(6) have the same cost while the

second form is more efficient for vector computation. This efficiency for vectorization can
be further increased as follows. Define

zx = { A } e_6,x,,"7) = {r/ _}c_'_×2; A zx col{A(/)) and 3, = co1{3,(i)}_3"x"; 1;I z_ 3'

&- _ co1{6,-(i)}, & = col{6e(i)},G, = col{&,(/)}, and _5,, = col{&,(i)}eRa"×';

8t and 8,or = 8v '

The computation in Eqs. (3)-(6) can then be performed by a simple matrix-matrix multi-

plication as:

6 = I:I_ (7)

Note that the matrix fl is constant and can be precomputed. Also, the above computation

results in a certain arrangement of the vectors 8,-(i),St(i),6,,,(i), and _v(i), which affects

the rest of the computation and should be taken into account. However, because of the
structure of the matrix H and the vector _ is not efficient to use, the regular matrix-matrix

multiplication routine is based on the vector-dot operation (see below).

B. SCATTER AND GATHER OPERATIONS: FORCE AND ACCELERA-

TION PROPAGATION

Using similar technique as for the velocity propagation, the propagation of force and

acceleration can be globally vectorized and represented in terms of large matrix-vector

multiplications as [3]:

Z(B) = ( c* ) Z+ + K = (H*¢)Z+ + K (8)

c_+ = (II¢') cffB) = (YI¢*)cffB) (9)

where Z(B) and _(B)e_ ¢'+6)×_ are the vectors of residual force and acceleration of the

bus. Z+(i) and _+(i)c_ TM are the residual force and acceleration of appendage i, and

Z + _ col {Z+(i)} and o_+ _ col {al+(i)}c_}_ 6nxl" rl¢_}_ 6nxm is an appropriate combination

of A(i) and 3'(Q and can be precomputed. ¢¢IR 6x6" is a sparse matrix that needs to be

formed in real time. In Eqs. (8)-(9), H*¢eN (m+6)x6,' and H¢*eN 6"x('n+6)
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The matrix-vector multiplication routine provided by the SKYbolts (and other vector

supercomputers) is based on the vector-dot operation. Consider a matrix-vector multipli-
cation as V -" MU where M is a PxQ matrix and let M (i) and M(i) denote the rows and

columns of matrix M, respectively. The vector-dot based routine is given:

Fori=l toP,

V(i) = M (i) . U (10)

However, another possible algorithm for matrix-vector multiplication is based on the

SAXPY (scalar-vector multiply plus vector) operation [11]:

Fori=l toQ,

Yi= Y i-1 + M(i)U(i) (11)

Both the vector-dot and SAXPY operations are highly suitable for vector computation.

The operation in Eq. (10) requires P vector-dot operations on vectors of dimension Q

while that in Eq. (11) requires Q SAXPY operations on vectors of dimension P. Based

on our discussion in Section 3.B, it then follows that the P < Q, the vector-dot based

routine, and the P > Q, the SAXPY based routine, are more efficient.

For our implementation, the values of n and rn were n = 13 and m = 10. Thus, the

vector-dot routine is highly optimal for matrix-vector multiplication in Eq. (8) because

it requires 16 vector-dot operations on vectors of dimension 78. However, it is highly

inefficient for Eq. (9) as it requires 78 vector-dot operations on vectors of dimension 16. If

the SAXPY based routine is used for Eq. (9), then it requires only 16 SAXPY operations

on the vectors of dimension 78.

The C language was used for the development of our vectorized code, which implied

that the matrices are stored by rows. However, for efficient implementation of the SAXPY

based routine, matrices need to be stored and fetched by columns. For Eq. (9), the need

for transposing the matrix He* can be simply eliminated by rewriting it as:

= (a(B))*(n¢*)* = (12)

Another advantage of Eq. (12) is that for both Eqs. (8) and (12), only the matrix H*¢

needs to be formed.

Our SAXPY based routine, though developed in C language, significantly increased

the computational efficiency and was used very frequently. Obviously, if this routine is

provided by the vendors and developed in assembly language, it can offer an even greater

computational efficiency. Note that, for the matrix-matrix multiplication in Eq. (7), we

also used a SAXPY based matrix-matrix multiplication routine that is more efficient than

the vector-dot based routine.
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C. COMPUTATION OF ARTICULATED-BODY INERTIA AND ACCEL-
ERATION OF BUS

The computation of the articulated-body inertia, P(B)_(m+_)×(m+6), and accelera-

tion, c_(B), of the bus represents the major computation-intensive parts of the vectorized

algorithm (over 30% of the total computation time). As stated before, the computation

of P(B) represents a gather operation and was globally vectorized in a similar fashion as

the computation of Z(B). However, significant reduction (more than 50%) in computation

time was achieved by several changes in the data structure and the type of operations to

find the most optimal way for computation of P(B). In the final form, the symmetry

of P(B) was exploited and only the diagonal and lower triangular parts of P(B) were

computed, a(B) is computed as the solution of the system.

P(B)c_(B)=¢(B) (13)

We first used a Cholesky-based routine provided by the SKYbolt's library for the solution

of the symmetric, positive definite, system in Eq. (13). Later, we developed a routine based

on the LDL* decomposition [11] that did not require square-root operation. Although our

routine was developed in C and was not vectorized, it was significantly faster than the

SKYbolt's routine. However, the main motivation for and the advantage of this routine

was that, given the way the matrix P(B) was computed, it could easily be used for solution

of Eq. (13) without any need for data movement. Again, if this routine is developed by

the vendor in assembly language and in fully vectorized form, it can offer an even greater

computational efficiency.

D. DATA MOVEMENT MINIMIZATION

Major improvement in the efficiency of the vectorized algorithm was achieved by

minimizing the data movement overhead through modification of the data structure and

operations of the algorithm. Here, a few examples are discussed.

1. Matrix-Matrix Multiplication

The computation of vectorized DARTS involves many matrix-matrix multiplications

as A = BC for both small and very large matrices. A vector-dot based matrix-matrix

multiplication routine requires that first the matrix C be transposed. However, if matrix

C is symmetric, then it does not need to be transposed. The SKYbolts provided two

matrix-matrix multiplication routines for the general (nonsymmetric matrix) case and the

special case (symmetric matrix). However, even for the general case, whenever possible

we eliminated the need to transpose the matrix C by either forming C* (if it could be

precomputed) or directly computing C*.

Another frequently used operation was chained matrix-matrix multiplication, as

A = BCB*, for both small and very large matrices and with C being a symmetric ma-

trix. For example, this type of matrix-matrix multiplication occurs in projection of mass
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matrices of the appendages onto the bus frame or in computation of P(B). This opera-

tion can be performed without any need for matrix transposition by simply rewriting it

as A = B(BC)* . This simple modification resulted in a significant reduction of the data

movement overhead particularly for computation of P(B) wherein the matrices involved

in the computation were very large.

2. Vector Touch Minimization

One of the widely used operations in the vector processing is a GAXPY (matrix-vector

multiply plus vector) operation [11] as V1 = MV2 + 1/3 wherein M is a matrix and I/"1, V2,

and V3 are vectors. In addition to the computational efficiency, a GAXPY routine reduces

the vector touch since the vector V4 = MV2 does not need to be explicitly computed,

stored, and reloaded. However, the SKYbolt's library did not provide such a routine and

we had to develop our own routine. Several other routines were also developed for other

operations with the purpose of minimizing the vector touch.

3. Data Structure Modification

Our major effort in reducing the data movement overhead was based on modifying

the data structure of the algorithm to find the most optimal form. Here, we give a simple

example that underlines the importance of the data movement overhead minimization. The

computation times of evaluating angular, awi, and linear, avi , gyroscopic acceleration

of appendages for i = 1 to n, were measured as 137 #s and 121 t_s. For the rest of the

computation, it wasthen required to merge the vectors a_,,i and a,,i and form a vector

a i = . However, it took 143 ps to form the vectors ai for i = 1 to n which was
avi

greater than the computation time for either awl or avi. The algorithm was then modified

to directly compute and form the vectors ai without any data movement. This simple

example clearly shows that for vector processing the data movement time can be even

greater than the computation time.

E. GLOBAL VECTORIZATION OF SMALL MATRIX-VECTOR OPERA-

TION LOOPS

A rather significant part of the DARTS algorithm, which seemed to be unvectorizable,

involved many Do-loops with small vectors and matrices. An example of such frequently

occurring Do-loops is:

Fori= 1 ton,

Iq, = MiV2i + V3i (14)

where Vli,r2i , and Vai are 3 x 1 vectors and Mi is 3 x 3 matrix. Due to the small

dimension of vectors and matrix, it is more efficient to use scalar (serial) routines for such

Do-loops. However, we developed a technique for global vectorization of such Do-loops.
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Algorithm

Serial DARTS
on SUN SPARC II

Serial DARTS
on 1 SKY Bolts

Vectorized DARTS

on one SKY Bolt

Parallel/Vectorized DARTS

on two SKY Bolts

Computation Time

(in ms)

24.39 ms

12.37 ms

7.29 ms

4.82 ms

Speedup

DI

(Reference Time)

2

Faster Hardware

1.7

Vectorization

1.5

Parallelization & Vectorization

Table I. Comparison of different algorithms/architecture computational efficiency

To see this, let us define

V 1 _-_ CO1 {Eli}, V 2 _ c01 {V2i},V 3 Lx col {Vai}e:_ a"xl, and M diag {Mi}e_, a"×a"

The above loop can then be replaced by a single matrix-vector multiplication:

171 = MI/) + V3 (15)

Of course, due to the sparse structure of matrix M, it is highly inefficient to compute Eq.

(15) by performing a general matrix-vector multiplication. However, the matrix M is a

banded matrix with the nonzero elements only on its five leading diagonals. The compu-

tation in Eq. (15) can be efficiently done by performing the matrix-vector multiplication

by diagonals. To see this, let M j, j = -2 to 2, denote the diagonals of matrix M, where

M ° is the main diagonal.

The computation in Eq. (15) can then be done:

Set 171-a = V3

For j = -2 to 2,

V] = MJ (D V2 + V_ -' (16)
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where ® indicates element-by-element multiplication of two vectors. The element-by-

element vector multiplication plus vector operation in Eq. (16) is highly efficient for

vector computation and it is also provided by the SKYbolt's library. The efficiency of

this technique for global vectorization results from the fact that it involves five such vector

operations on large vectors. However, we did not implement this technique since the routine

provided by the SKYbolt's library was not functional for double precision. Furthermore, its

efficient implementation requires the minimization of the data movement overhead which

may occur in forming the diagonals of matrix M. This requires a direct control of cache

memory, which was not possible on the SKYbolt. Nevertheless, for future applications,

this technique is very promising as it allows the seemingly strictly serial Do-loops to be

vectorized.

5. Discussion and Conclusion

Table I shows a comparison of the different implementations of DARTS for a 13-body

and 10-flexible modes model of Cassini spacecraft. As stated before, the speedup of the

vectorized algorithm increases with the increase in the number of flexible modes and/or

the number of bodies. For a 13-body and 20-flexible modes model, the vectorized algo-

rithm achieves a speedup of 2 over serial DARTS on one SKYbolt. We did not discuss

the algolithm's parallelization in detail. Suffice it to mention that, despite using several

strategies to overlap the computation and communication as much as possible, the com-

munication overhead from the slow VME bus remained a major bottleneck, which explains

the rather poor speedup of parallelization.

Here, we would like to summarize some of the shortcomings of the SKYbolt and to
discuss some desired features.

A. DOUBLE-PRECISION PERFORMANCE

The i860 is claimed to be a 64-bit vector processor [4]. However, it has a 128-bit wide

data path, which means that only two double-precision operands can be simultaneously

loaded from or stored to the cache memory. This significantly reduces the speed of the

processor for those vector operations that involve three operands. We implemented our

vectorized algorithm with double precision. Although, we did not try the single-precision

implementation of the algorithm, given the high vectorization degree of our algorithm, a

much greater speedup can be expected for single-precision implementation.

B. LIMITED CACHE MEMORY AND LACK OF CACHE MANAGEMENT

The SKYbolt did not provide a means for managing the cache memory. Thus, we

could not further reduce overhead caused by the data movement between the cache and

main memory by explicitly defining the physical location of data in the cache memory and,

hence, increasing the data re-use. As a result, most of the computation was performed

on the data located in the main memory which, in addition to increasing the overhead,

significantly reduced the computation speed of both scalar and vector operations. Given
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this extensive useof the main memory, a DRAM main memory with a slower speedover
an SRAM main memory, would haveincreasedthe overheadby a factor of 2.

For double precision, the sizeof i860 cacheis 1 K. However,the vectorized algorithm
involved the operations on matrices larger than the size of the cache. For example, the
matrix II*¢ in Eqs. (8) and (12) is of dimension 16 x 78 and the computation of P(B)

involves even bigger matrices. An efficient technique for handling such cases is the seg-

mentation of the computation [10]. However, this requires a direct control of the cache

memory which, as stated before, was not possible.

C. SKYBOLT'S LIBRARY

As stated before, the SKYbolt's library did not provide some of the useful routines

that were frequently used in our implementation. Also, some of the routines provided were

not functional either at all or for double precision.

Despite all the above shortcomings, the SKYbolt was highly cost effective and allowed

us to meet our goal (see Table I) with a relatively short development time. As stated

before, the SKYbolt represents the first generation of low-cost vector processors. The new

generations not only provide a drastic reduction in the cost over performance ratio, but also

significant improvements in both hardware and software. The size of cache memory in the

new versions of i860 has increased by a factor of 2. Single board multiple i860 processor-

based architectures [13] are now offered that present a much more balanced system for

parallel computation since the communication between processors can be performed on

board and via a fast interconnection network. The library routines are also improved.

In particular, based on our suggestions to the vendors, new routines including some of

the routines developed by us, e.g., the SAXPY-based matrix-vector and matrix-matrix

multiplication routines and LDL* routine for linear system solution,were added to the

library.

The results of our work, along with the significant improvements in both the price

and performance of these architectures, clearly suggest that the parallel/vector algorithms

and architectures present a highly efficient and low-cost approach for achieving real-time

simulation capability for even more complex and computationally demanding multibody

systems, such as the Space Station. In particular, it should be mentioned that the Space

Station has a star topology that allows the application of a similar global vectorization

strategy as for Cassini spacecraft. Also, due to the flexibility of Space Station appendages,

not only the computation for appendages can be vectorized but also, based on our analysis

in Section 2, more vector processors can be used to increase the speedup to the paralleliza-

tion.
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